最新消息:阿里云双12优惠,史上最低折扣。

GRPC:如何实现分布式日志跟踪

云服务器 aliyun 287浏览

本文将介绍如何在 gRPC 分布式场景中,实现 API 的日志追踪。

什么是 API 日志追踪?

一个 API 请求会跨多个微服务,我们希望通过一个唯一的 ID 检索到整个链路的日志。

我们将会使用rk-boot来启动 gRPC 服务
安装
go get GItHub.com/rookie-ninja/rk-boot
快速开始
rk-boot 默认集成了 grpc-gateway,并且会默认启动。
我们会创建 /api/v1/greeter API 进行验证,同时开启 logging, meta 和 tracing 拦截器以达到目的。
1. 创建 api/v1/greeter.proto
syntax = “proto3”;

package api.v1;

option go_package = “api/v1/greeter”;

service Greeter {
  rpc Greeter (GreeterRequest) returns (GreeterResponse) {}
}

message GreeterRequest {
  string name = 1;
}

message GreeterResponse {
  string message = 1;}
2. 创建 api/v1/gw_mapping.yaml
type: google.api.Service
config_version: 3

# Please refer google.api.Http in https://github.com/googleapis/googleapis/blob/master/google/api/http.proto file for detAIls.
http:
  rules:
    – selector: api.v1.Greeter.Greeter
      get: /api/v1/greeter
3. 创建 buf.yaml
version: v1beta1
name: github.com/rk-dev/rk-demo
build:
  roots:
    – api
4. 创建 buf.gen.yaml
version: v1beta1
plugins:
  # protoc-gen-go needs to be installed, generate go files based on proto files
  – name: go
    out: api/gen
    opt:
     – paths=source_relative
  # protoc-gen-go-grpc needs to be installed, generate grpc go files based on proto files
  – name: go-grpc
    out: api/gen
    opt:
      – paths=source_relative
      – require_unimplemented_Servers=false
  # protoc-gen-grpc-gateway needs to be installed, generate grpc-gateway go files based on proto files
  – name: grpc-gateway
    out: api/gen
    opt:
      – paths=source_relative
      – grpc_api_configuration=api/v1/gw_mapping.yaml
  # protoc-gen-openapiv2 needs to be installed, generate swagger config files based on proto files
  – name: openapiv2
    out: api/gen
    opt:
      – grpc_api_configuration=api/v1/gw_mapping.yaml
5. 编译 proto file
$ buf generate如下的文件会被创建。$ tree api/gen
api/gen
└── v1
    ├── greeter.pb.go
    ├── greeter.pb.gw.go
    ├── greeter.swagger.json
    └── greeter_grpc.pb.go
 
1 directory, 4 files
6. 创建 bootA.yaml & serverA.go
Server-A 监听 1949 端口,并且发送请求给 Server-B。
我们通过 rkgrpcctx.InjectSpanToNewContext() 方法把 Tracing 信息注入到 Context 中,发送给 Server-B。

— grpc: – name: greeter # Name of grpc entry port: 1949 # Port of grpc entry enabled: true # Enable grpc entry interceptors: loggingZap: enabled: true meta: enabled: true tracingTelemetry: enabled: true package main import ( “context” “demo/api/gen/v1” “fmt” “github.com/rookie-ninja/rk-boot” “github.com/rookie-ninja/rk-grpc/interceptor/context” “google.golang.org/grpc” ) // Application entrance. func main() { // Create a new boot instance. boot := rkboot.NewBoot(rkboot.WithBootConfigPath(“bootA.yaml”)) // Get grpc entry with name grpcEntry := boot.GetGrpcEntry(“greeter”) grpcEntry.AddRegFuncGrpc(registerGreeter) grpcEntry.AddRegFuncGw(greeter.RegisterGreeterHandlerFromEndpoint) // Bootstrap boot.Bootstrap(context.Background()) // Wait for shutdown sig boot.WaitForShutdownSig(context.Background()) } func registerGreeter(server *grpc.Server) { greeter.RegisterGreeterServer(server, &GreeterServer{}) } type GreeterServer struct{} func (server *GreeterServer) Greeter(ctx context.Context, request *greeter.GreeterRequest) (*greeter.GreeterResponse, error) { // Call serverB at 2008 with grpc client opts := []grpc.DialOption{ grpc.WithBlock(), grpc.WithInsecure(), } conn, _ := grpc.Dial(“localhost:2008”, opts…) defer conn.Close() client := greeter.NewGreeterClient(conn) // Inject current trace information into context newCtx := rkgrpcctx.InjectSpanToNewContext(ctx) client.Greeter(newCtx, &greeter.GreeterRequest{Name: “A”}) return &greeter.GreeterResponse{ Message: fmt.Sprintf(“Hello %s!”, request.Name), }, nil

7. 创建 bootB.yaml & serverB.go

Server-B 监听 2008 端口。

— grpc: – name: greeter # Name of grpc entry port: 2008 # Port of grpc entry enabled: true # Enable grpc entry interceptors: loggingZap: enabled: true meta: enabled: true tracingTelemetry: enabled: true package main import ( “context” “demo/api/gen/v1” “fmt” “github.com/rookie-ninja/rk-boot” “google.golang.org/grpc” ) // Application entrance. func main() { // Create a new boot instance. boot := rkboot.NewBoot(rkboot.WithBootConfigPath(“bootB.yaml”)) // Get grpc entry with name grpcEntry := boot.GetGrpcEntry(“greeter”) grpcEntry.AddRegFuncGrpc(registerGreeterB) grpcEntry.AddRegFuncGw(greeter.RegisterGreeterHandlerFromEndpoint) // Bootstrap boot.Bootstrap(context.Background()) // Wait for shutdown sig boot.WaitForShutdownSig(context.Background()) } func registerGreeterB(server *grpc.Server) { greeter.RegisterGreeterServer(server, &GreeterServerB{}) } type GreeterServerB struct{} func (server *GreeterServerB) Greeter(ctx context.Context, request *greeter.GreeterRequest) (*greeter.GreeterResponse, error) { return &greeter.GreeterResponse{ Message: fmt.Sprintf(“Hello %s!”, request.Name), }, nil }

8. 文件夹结构

├── api │ ├── gen │ │ └── v1 │ │ ├── greeter.pb.go │ │ ├── greeter.pb.gw.go │ │ ├── greeter.swagger.json │ │ └── greeter_grpc.pb.go │ └── v1 │ ├── greeter.proto │ └── gw_mapping.yaml ├── bootA.yaml ├── bootB.yaml ├── buf.gen.yaml ├── buf.yaml ├── go.mod ├── go.sum ├── serverA.go └── serverB.go

9. 启动 ServerA & ServerB

$ go run serverA.go $ go run serverB.go

10. 往 ServerA 发送请求

¥ curl “localhost:1949/api/v1/greeter?name=rk-dev”

11. 验证日志

两个服务的日志中,会有同样的 traceId,不同的 requestId。

我们可以通过 grep traceId 来追踪 RPC。

ServerA ———————————————————————— endTime=2021-10-20T00:02:21.739688+08:00 … ids={“eventId”:”0d145356-998a-4999-ab62-6f1b805274a0″,”requestId”:”0d145356-998a-4999-ab62-6f1b805274a0″,”traceId”:”c36a45eb076066df39fa407174012369″} … operation=/api.v1.Greeter/Greeter resCode=OK eventStatus=Ended EOE ServerB ———————————————————————— endTime=2021-10-20T00:02:21.739125+08:00 … ids={“eventId”:”8858a6eb-e953-42ad-bdc3-c466bbbd798e”,”requestId”:”8858a6eb-e953-42ad-bdc3-c466bbbd798e”,”traceId”:”c36a45eb076066df39fa407174012369″} … operation=/api.v1.Greeter/Greeter resCode=OK eventStatus=Ended EOE

概念

当我们没有使用例如 jaeger 调用链服务的时候,我们希望通过日志来追踪分布式系统里的 RPC 请求。

rk-boot 的拦截器会通过 openTelemetry 库来向日志写入 traceId 来追踪 RPC。

当启动了日志拦截器,原数据拦截器,调用链拦截器的时候,拦截器会往日志里写入如下三种 ID。

EventId

当启动了日志拦截器,EventId 会自动生成。

— grpc: – name: greeter # Name of grpc entry port: 1949 # Port of grpc entry enabled: true # Enable grpc entry interceptors: loggingZap: enabled: true ———————————————————————— … ids={“eventId”:”cd617f0c-2d93-45e1-bef0-95c89972530d”} …

RequestId

当启动了日志拦截器和原数据拦截器,RequestId 和 EventId 会自动生成,并且这两个 ID 会一致。

— grpc: – name: greeter # Name of grpc entry port: 1949 # Port of grpc entry enabled: true # Enable grpc entry interceptors: loggingZap: enabled: true meta: enabled: true ———————————————————————— … ids={“eventId”:”8226ba9b-424e-4e19-ba63-d37ca69028b3″,”requestId”:”8226ba9b-424e-4e19-ba63-d37ca69028b3″} … 即使用户覆盖了 RequestId,EventId 也会保持一致。 rkgrpcctx.AddHeaderToClient(ctx, rkgrpcctx.RequestIdKey, “overridden-request-id”) ———————————————————————— … ids={“eventId”:”overridden-request-id”,”requestId”:”overridden-request-id”} …

TraceId

当启动了调用链拦截器,traceId 会自动生成。

— grpc: – name: greeter # Name of grpc entry port: 1949 # Port of grpc entry enabled: true # Enable grpc entry interceptors: loggingZap: enabled: true meta: enabled: true tracingTelemetry: enabled: true

转载请注明:小猪云服务器租用推荐 » GRPC:如何实现分布式日志跟踪